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Super Resolution = increase resolution

= Images — increase the spatial resolution (~ upsampling, enhancement)
= Audio — increase temporal resolution (~ bandwidth extension)

= Remote sensing data — increase spatial and temporal resolution of such data
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Super Resolution = increase resolution

= Images — increase the spatial resolution (~ upsampling, enhancement)
= Audio — increase temporal resolution (~ bandwidth extension)

= Remote sensing data — increase spatial and temporal resolution of such data

Resolution loss possibly due to ...

= measurement process (e.g. sensors bandwidth, small number of sensors, noise)
= lossy compression (e.g. MPEG coding)

= computational complexity (e.g. fast simulation)

It's inverse ill-posed problem — How to recover the missing information? And which?
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Super Resolution of Turbulent flows

Sparse and noisy Rensirucied flow

In particular, | work on messurement
= Super-resolution ...

= ... of velocity fields ...
(sparse, noisy)

= ... describing turbulences
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Super Resolution of Turbulent flows

Sparse and noisy Rensirucied flow

In particular, | work on esseners
= Super-resolution ...

= ... of velocity fields ...
(sparse, noisy)

= ... describing turbulences

Applications

I R
e e e e

Geo-science Fluid Dynamics Biomedics

[%Temperature, Pollution, etc. Py Fluids simulation and identification Blood flows
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Phyisic-Informerd NNs
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Neural Networks (PINNs)

PINNSs are DNNs that learn the solution of a PDE [Raissi et al., 2019]:
Fx,t,®, V.8, V28,0,8,..) =0, @:x,t— d(x,1t) (1)

with x € Q, t € [0,T], and ® a non-linear diff. operator (e.g. Navier-Stokes eq.)
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= Once trained, the DNN is able to evaluate any new point x* € Q and ¢* € [0, 7.

= It acts like Kernel interpolation (Neural Tangent Kernel [Tancik et al., 2020])

XPDE terms only

v'Unsupervised v'Meshless v'Data and Model driven .
as regularizers
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PINNs for Unsupervised Super-resolution

Low resolution data Physical models
{ + 1
reconstruction loss / initial condition Regularize higher unseen data

k = 64pxl, scale = 1/g

Target data
k = 256px], scale = 1

--- K41 model
—— Full resolution
—— Full resolution

« observed scale

200 10 107
Q Wavenber k (scales) J
~ g

Scale from the obs. data Scale to reconstruct
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PINNs for Unsupervised Super-resolution

Low resolution data Physical models
{ + 1
reconstruction loss / initial condition Regularize higher unseen data

k = 64pxl, scale = 1y

Target data
k = 256px], scale = 1

--- K41 model

~— Full resolution
—— Full resolution « observed scale
107°
10° 10t 102
Q Wavenber k (scales) J
Y Y
Scale from the obs. data Scale to reconstruct
Physical models:
. Sub-grid models Smooth gradient Navier-Stokes PDE
Divergence-free output Lo )
(Structure fun.) regularization (if temporal data)
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pipeline

Proposed Model
mo

Super-resolution of Instantaneous Velocity Field (= just a single snapshot)

= Only divergence-free — soft or hard constraints
= Navier-Stokes need temporal evolution — no PDE available
= Structure functions as sub-grid model [Effinger and Grossmann, 1987]

Tputs

sparse coords Xy

0000 o
o o
o o
o ° o

high-res coords Xy
(dense mesh)

—

Learned Model

positional encoding Continuous Encoding Network

(RFF) (MLP)

x| __ sinBx
y

Hard Constaints

(opional)

Vi, V2@ available
trough backpropagation

! J

® 0 ]
cos Bx @-0O L

Outputs.
Sparse field &, on Xy

Data-fit supervision
Ground Truth wy

High-res regularization
Physics-based regurlarizers

V-8,

11S2(6) = M)
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pipeline

Super-resolution of Instantaneous Velocity Field (= just a single snapshot)

= Only divergence-free — soft or hard constraints
= Navier-Stokes need temporal evolution — no PDE available
= Structure functions as sub-grid model [Effinger and Grossmann, 1987]

Tnputs Outputs. Data-fit supervision
Sparse field &, on Xy Ground Truth 1y
sparse coords Xy - :

Learned Model

Oo o % o% positional encoding Continuous Encoding Network
o) o (RFF) (MLP)
o o
o ° o
x| __ sinBx __ @0 |
high-res coords Xy y cos Bx ..O u, High-res regularization

Physics-based regurlarizers

(dense mesh)

ard Consrais
(optional)
a2
- V8,12
Vi, V2@ available
trough backpropagation
0 J
T

11S2(6) = M)

A Not “image to image"”, but coordinate to “image”

A Not dataset of “images”, but dataset of pixels of one image
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Proposed Model
Om

Qualitative results

(" soft
MLPrff +/\SfunLSfun
-
Vs
hard
MLP ¢ + AsunLstun
-

Quantitative results published in 20th International Symposium on Applications of Laser and Imaging Techniques
to Fluid Mechanics, Lisbon, 2022
6/7 @




Conclusion and Current Work

Take home messages for PINNs

v Best of the data- and model-driven approach

v/ Able to perform unsupervised meshless evaluation (vs. classical CNN)

v Custom prior physical knowledge (e.g., sub-grid models) as regularizers

X Some hard constraint can be implemented — A artifacts on HR and gradients

X Difficulty to minimize multi-task learning objectives ()
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Conclusion and Current Work

Take home messages for PINNs
v Best of the data- and model-driven approach
v/ Able to perform unsupervised meshless evaluation (vs. classical CNN)
v Custom prior physical knowledge (e.g., sub-grid models) as regularizers
X Some hard constraint can be implemented — A artifacts on HR and gradients

X Difficulty to minimize multi-task learning objectives ()

Links to other research fields

= to Implicit Neural Representation (NeRF, SIREN, BACON [Lindell et al., 2022])
— application to images, point-clouds, 3D shapes, audio, video, etc.

= (x) to Multi-Task Learning (Curriculum or Causal Learning [Wang et al., 2022])

Current work

= Multi/Cross-scale training with Fourier features at every layers
= Extension to temporal data and PDEs

= Need for real data (do you have any?)

Thank you!
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