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Introduction Phyisic-Informerd NNs Proposed Model Conclusion

Super Resolution = increase resolution SEARCH-PLUS

• Images → increase the spatial resolution (∼ upsampling, enhancement)
• Audio → increase temporal resolution (∼ bandwidth extension)
• Remote sensing data → increase spatial and temporal resolution of such data

Resolution loss possibly due to …

• measurement process (e.g. sensors bandwidth, small number of sensors, noise)
• lossy compression (e.g. MPEG coding)
• computational complexity (e.g. fast simulation)

It’s inverse ill-posed problem → How to recover the missing information? And which?
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Introduction Phyisic-Informerd NNs Proposed Model Conclusion

Super Resolution of Turbulent flows Wind

In particular, I work on

• Super-resolution …

• … of velocity fields …
(sparse, noisy)

• … describing turbulences

Sparse and noisy
measurements

Renstructed flow

Applications

Geo-science
Wind, Temperature, Pollution, etc.

Fluid Dynamics
Fluids simulation and identification

Biomedics
Blood flows
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Introduction Phyisic-Informerd NNs Proposed Model Conclusion

Model: Physics-informed Neural Networks (PINNs) Calculator

PINNs are DNNs that learn the solution of a PDE [Raissi et al., 2019]:

𝑓(x, 𝑡, Φ, ∇xΦ, ∇2
xΦ, 𝜕𝑡Φ, …) = 0, Φ ∶ x, 𝑡 → Φ(x, 𝑡) (1)

with x ∈ Ω, 𝑡 ∈ [0, 𝑇 ], and Φ a non-linear diff. operator (e.g. Navier-Stokes eq.)

Core idea:

⎧{{
⎨{{⎩

Φ(x, 𝑡) ≈ DNN(x, 𝑡)
𝜕𝑡Φ(x, 𝑡) ≈ autograd𝑡 DNN(x, 𝑡)
∇x, ∇2

x, … ≈ autogradx DNN(x, 𝑡)

ℒ = ℒrec. + ℒPDE

ℒrec. comprises MSE on observations, initial and

boundary conditions

• Once trained, the DNN is able to evaluate any new point x∗ ∈ Ω and 𝑡∗ ∈ [0, 𝑇 ].

• It acts like Kernel interpolation (Neural Tangent Kernel [Tancik et al., 2020])

3Unsupervised 3Meshless 3Data and Model driven 7PDE terms only
as regularizers
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Proposed Approach: PINNs for Unsupervised Super-resolution Flask

Low resolution data
↓

reconstruction loss / initial condition
+

Physical models
↓

Regularize higher unseen data

Scale from the obs. data
(available)

Scale to reconstruct
(not available)

observed scale target scale

Target data

pxl, scale = 1

Observed data

pxl, scale

K41 model

Physical models:
Divergence-free output Sub-grid models

(Structure fun.)
Smooth gradient
regularization

Navier-Stokes PDE
(if temporal data)
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Introduction Phyisic-Informerd NNs Proposed Model Conclusion

Proposed Approach: pipeline Flask

Super-resolution of Instantaneous Velocity Field (= just a single snapshot)

• Only divergence-free → soft or hard constraints
• Navier-Stokes need temporal evolution → no PDE available
• Structure functions as sub-grid model [Effinger and Grossmann, 1987]

sparse coords
Sparse field on

Inputs Data-fit supervision

Learned Model

high-res field on

Outputs
Ground Truth

high-res coords
(dense mesh)

High-res regularization
Physics-based regurlarizers

available
trough backpropagation

positional encoding
(RFF)

Continuous Encoding Network
(MLP)

Hard Constraints

(optional)

Exclamation-TriangleNot “image to image”, but coordinate to “image”
Exclamation-TriangleNot dataset of “images”, but dataset of pixels of one image
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Proposed Approach: Qualitative results Flask

Groun-truth

rff(Baseline) hard
rff Sfun Sfun

soft
rff Sfun Sfun

Input

Quantitative results published in 20th International Symposium on Applications of Laser and Imaging Techniques

to Fluid Mechanics, Lisbon, 2022
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Conclusion and Current Work LIST

Take home messages for PINNs

3 Best of the data- and model-driven approach

3 Able to perform unsupervised meshless evaluation (vs. classical CNN)

3 Custom prior physical knowledge (e.g., sub-grid models) as regularizers

7 Some hard constraint can be implemented → Exclamation-Triangle artifacts on HR and gradients

7 Difficulty to minimize multi-task learning objectives (∗)

Links to other research fields

• to Implicit Neural Representation (NeRF, SIREN, BACON [Lindell et al., 2022])
→ application to images, point-clouds, 3D shapes, audio, video, etc.

• (∗) to Multi-Task Learning (Curriculum or Causal Learning [Wang et al., 2022])

Current work

• Multi/Cross-scale training with Fourier features at every layers

• Extension to temporal data and PDEs

• Need for real data (do you have any?)

Thank you!
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